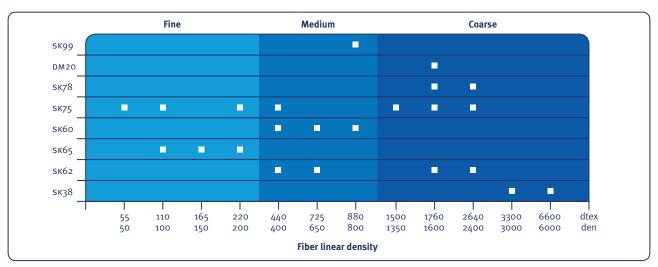


Ultra High Molecular Weight Polyethylene Fiber from DSM Dyneema

UHMWPE fiber combines excellent mechanical properties with low density, resulting in high performance-on-weight basis.


The UHMWPE fiber from DSM Dyneema is a gel-spun, multi-filament fiber produced from ultra high molecular weight polyethylene, with main characteristics: high strength, low weight, low elongation at break, and resistance to most chemicals. To stimulate developments, this sheet provides an overview of properties measured on UHMWPE fibers from DSM Dyneema.

Fiber range

UHMWPE fibers from DSM Dyneema are produced in three strength ranges and several linear densities with a characteristic very low filament diameter. The tensile properties are correlated with the fiber linear density. Detailed information per fiber type is available on request, as Product Data Sheets, Product Specification Sheets, Material Safety Data Sheets and Fact Sheets.

The disclosed data has been generated from test results of UHMWPE fibers from DSM Dyneema and can not be considered valid for other fibers from other UHMWPE suppliers.

UHMWPE		Tensile Strength		Tensile Modulus			Elongation
Fiber Type	N/tex	g/den	GPa	N/tex	g/den	GPa	to break %
s к99	4.3	48	4.1	159	1801	155	
DM20*	3.2	36	3.1	96	1088	94	
sк75* sк78*	3.4 - 4.0	38 - 45	3.3 - 3.9	112 - 137	1267 - 1552	109 - 132	3 - 4
SK60 SK62 SK65	2.3 - 3.4	28 - 38	2.4 - 3.3	67 - 102	759 - 1158	65 - 100	
s к38	1.7	19	1.6	35	396	34	6.5

^{*:} grades also available as 'XBO grades; XBO is an overlay finish to enhance bending fatigue performance

Please contact: Gruschwitz Textilwerke AG +49 (0) 7561 9098-0 • info@gruschwitz.com • www.gruschwitz.com

Mechanical properties

UHMWPE fibers have a high strength and a high modulus (resistance against deformation) in the fiber direction. In combination with the low density this results in an extremely high strength on weight basis, making it one of the strongest man-made fibers.

The elongation at break is relatively low, but owing to the high strength, the energy to break is high. In contrast to other synthetic fibers, the mechanical properties are not influenced by the presence of water. Due to the anisotropic nature of high modulus polyethylene fibers, the modulus and strength in transverse direction are lower than in fiber direction.

Subjecting UHMWPE fiber to long-term static loads leads to a permanent elongation called creep. The UHMWPE fiber types from DSM Dyneema have a higher creep resistance than other UHMWPE fibers enabling their use in various static loading conditions.

MECHANICAL			
Free breaking length	378	km	
Axial tensile strength	3.6	GPa	
Axial tensile modulus	116	GPa	
Axial compressive strength	0.1	GPa	
Axial compressive modules	116	GPa	
Transverse tensile strength	0.03	GPa	
Transverse modulus	3	GPa	
Transverse compressive strength	0.1	GPa	
Elongation at break	3 - 4	%	
Work to break	45 - 70	MJ/m3	
Rope Creep at 30°C, 300 MPa (SK75)	0.02**	%/day	
Rope Creep at 30°C, 300 MPa (sк78)	0.006**	%/day	
Rope Creep at 30°C, 300 MPa (DM20)	0.00007**	%/day	

^{**:} only indicative values and as example as rope creep depends on type of fiber, linear weight, time, temperature and load; more detailed info available on request

Thermal properties

Like other synthetic fibers, the mechanical properties of UHMWPE fibers are influenced by temperature. The strength and modulus increase at sub-ambient temperatures and decrease at higher temperatures. For long duration exposure UHMWPE fiber from DSM Dyneema can be used from cryogenic conditions up to a temperature of 70°C.

THERMAL					
Relative to 23°C	-60°C	+23°C	+60°C	+100°C	
Tensile strength	110%	100%	80%	55%	
Tensile modulus	110%	100%	85%	60%	
Elongation at break	90%	100%	100%	105%	

THERMAL		
Melting range	144 - 152	°C
Decomposition temperature	> 300	°C
Advised lowest temperature	No limit	
Advised long duration temperature limit	70	°C
Advised short duration temperature limit (non-constrained fiber)	130	°C
Advised short duration temperature limit (constrained fiber)	145	°C
Coefficient of linear thermal expansion	-12 X 10-6	1/K
Specific heat capacity	1850	J/kg.K
Thermal conductivity (axial)	20	W/m.K
Thermal conductivity (transverse)	0.2	W/m.K

Chemical resistance

UHMWPE fiber is very resistant against chemicals. Because it is produced from ultra high molecular weight polyethylene, it does not contain any aromatic rings or any amide, hydroxylic or other chemical groups that are susceptible to attack by aggressive agents.

CHEMICAL RESTISTANCE				
Resistance to acids		Excellent		
Resistance to alkali		Excellent		
Resistance to most chemicals		Excellent		
Resistance to water		Excellent		
Aviation Jet A fuel (ISO 1817 test liquid F)	RTCA DO160	Excellent		
Hydraulic fluid (ISO 1817 test liquid 103)	RTCA DO160	Excellent		
Lubricating oil (ISO 1817 test liquid 101)	RTCA DO160	Excellent		
Solvents and cleaning fluid (Isopropyl alcohol)	RTCA DO160	Excellent		
De-icing fluid (Ethylene glycol)	RTCA DO160	Excellent		
Insecticide (Pyrethroid pesticide)	RTCA DO160	Excellent		
Fire extinguishant (Protein, Fluroprotein)	RTCA DO160	Excellent		

Physical properties

UHMWPE fibers feel smooth due to their low friction coefficient. Its low density enables it to float on water. The water absorption in the fiber is negligible.

PHYSICAL				
Natural color	Opaque/white			
Density	970 - 980	kg/m³		
Crystallinity	⟨85%			
Filament linear density	1-3	dpf		
Filament diameter	12 - 21	μm		
Filament cross section (other types)	Round			
Filament cross section (SK60, SK65)	Bone shape			
Equilibrium moisture regain	None			
Water pick-up	None			
Boiling water shrinkage	< 1%			
Hysteresis loss factor (23°C, 5HZ)	0.02			
Friction coefficient (yarn-on-yarn)	0.05 - 0.07			

Electrical properties

Polyethylene is an insulator and has no groups with dipole character. After scouring, the UHMWPE fiber is characterized by a high electrical resistance, low dielectric constant and a very low dielectric loss factor.

ELECTRICAL				
Resistance	> 10 ¹⁴	Ohm		
Dielectric strength	900	kV/cm		
Dielectric constant (22°C, 10 GHz)	2.25			
Dielectric loss factor	0.0002			

Acoustic properties

UHMWPE fiber has a high sonic velocity. In the fiber direction, the sonic velocity is higher than in the transverse direction.

The acoustic impedance, the product of density and transverse sonic velocity, is near that of water.

ACOUSTIC		
Sonic velocity (axial)	10000 - 12000	m/s
Sonic velocity (transverse)	2000	m/s

Optical properties

UHMWPE fibers are visually opaque. The fiber is invisible to an UV-light source due to the low UV absorption coefficient in combination with no fluorescence or phosphorescence. It is also invisible for thermal imaging devices because of its low IR absorption coefficient and high thermal conductivity. The low reflectivity of radar waves results in a reduced visibility for radar sources. The refractive index axial to the fiber axis differs from the transverse direction making the fiber perform birefringence.

OPTICAL			
Ultraviolet visibility (UV)	Transparent		
Eye visibility (VIS)	Translucent		
Near infrared visibility (NIR)	Highly transparent		
Infrared visibility (IR)	Highly transparent		
Radar visibility	Highly transparent		
Refractive Index (axial)	1.59		
Refractive Index (transverse)	1.53		
Birefringence	0.06		

Flammability

Fabrics and panels produced from UHMWPE fiber from DSM Dyneema have passed various standards on flammability. Like any other synthetic fiber, it will burn slowly if ignited in atmospheric conditions and it is qualified as being self-extinguishing upon removal of the flame.

FLAMMABILITY		
Limited oxygen index	⟨20%	
Fabric, horizontal	FMVSS 302	Passed
Fabric, vertical	FAR 25.853b	Passed
Ballistic panel, vertical	DIN 4102	Passed

Fatigue resistance

Applications with UHMWPE fiber from DSM Dyneema have a higher resistance to repeated axial loading than other fiber types. The fibers combine high strength with high fatigue resistance, even if the loading is partly in compression as in repeated bending of rope applications. Despite its high modulus, the fibers are flexible and have a long flexural fatigue life. Because of the low friction coefficient and good abrasion resistance, internal abrasion of ropes is usually negligible.

FATIGUE RESISTANCE			
Abrasion resistance (yarn-on-yarn)	ASTM D6611	Excellent	
Abrasion resistance (covered rope)		Excellent	
Cutting resistance (covered rope)		Excellent	
Flexural fatigue (fiber)		Excellent	
Bending fatigue (rope)		Excellent	
Tension fatigue (rope)		Excellent	

Toxicity

Polyethylene is regarded as biologically inert. The UHMWPE fibers from DSM Dyneema are IARC classified 3 (not classifiable carcinogenic to human) based upon its length weighted geometric mean diameter. This diameter is too large to produce respirable fibers, meaning they will never reach the deeper part of the respiratory tract and fibrogenic or carcinogenic effects on the lung will not occur.

Fungal resistance

UHMWPE fiber from DSM Dyneema has excellent biological resistance. The fiber neither stimulates undesired growth nor is sensitive to any attack by microorganisms.

FUNGAL RESTISTANCE				
Aspergillus niger	RTCA DO160	Excellent		
Aspergillus flavus	RTCA DO160	Excellent		
Aspergillus versicolor	RTCA DO160	Excellent		
Penicillium funiculosum	RTCA DO160	Excellent		
Chaetomium globosum	RTCA DO160	Excellent		

Environmental properties

UHMWPE fiber is used in various outdoor applications under harsh weather conditions. In air the fiber is stable for many years. No special precautions are necessary during processing or storage. Only strong oxidizing media are able to attack the mechanical properties. Compared to other high tenacity fibers, long term exposure to UV shows the lowest decrease in strength and elongation at break.

ENVIRONMENTAL PROPERTIES		
Visible light exposure		Excellent
UV-exposure	ISO 4892	Very good
Weathering	ISO 12224	Excellent
Oxidation (28 days, 80°C, 50 bar)	ISO 13438	Passed

www.dyneema.com

Dyneema® and Dyneema®, the world's strongest fiber™ are trademarks of DSM. Use of these trademarks is prohibited unless strictly authorized.

Disclaimer

All information, data, recommendations, etc. relating DSM Dyneema products (the Information) is supported by research. DSM Dyneema assumes no liability arising from (i) the application, processing or use made of the Information or products; (ii) infringement of the intellectual or industrial property rights of third parties by reason of the application, processing or use of the Information or products by the Buyer. Buyer shall (i) assume such liability; and (ii) verify the information and the products.

